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Abstract. Non-linear optical properties of randomly oriented non-linear spheroidal metal
particles in a dielectric host are investigated. Two different Maxwell-Garnett-type approximations
are derived based on whether a self-consistency condition on the net polarization is invoked. These
two methods lead to quite different spectral density functions. Moreover, we show that the shape
of particles has a large influence on the spectral function through the depolarization effects and
thereby has a pronounced effect on the optical absorption and non-linear optical susceptibility.
We suggest that the self-consistent formalism can be used for large volume fractions, as mutual
interaction between different polarizations is included in the theory.

1. Introduction

Non-linear optical properties of granular composite materials have attracted much attention
in recent years because of their potential applications in physics and engineering [1, 2]. A
typical system is composed of non-linear metal particles, randomly embedded in a linear (or
non-linear) dielectric host. Such a composite system is a candidate for the role of enhancing
the optical non-linearity through the local field effects and/or surface plasmon resonances.
These enhancement mechanisms are sensitive to the composite microstructure.

In a recent work [3], we proposed the use of a structurally anisotropic composite to enhance
the optical non-linearity. The results show that such an anisotropy can separate the absorption
peak from the non-linearity enhancement peak and thus further enhance the figure of merit.
Anisotropy is clearly a phenomenon common in most materials and it can be an intrinsic
material property or can be induced by the application of fields. In real applications, the shape
of granular inclusions may deviate from a spherical shape during fabrication. Moreover, the
optical non-linearity can be enhanced by using non-spherical (e.g., spheroidal) inclusions [4].

In this work, we consider a system in which spheroidal metal particles are randomly
embedded in a dielectric host in an attempt to investigate how a non-spherical particle shape
can affect the effective non-linear response. In references [4] and [5], the effective non-
linear susceptibility was derived for composites of spheroidal particles in the dilute limit. For
simplicity, we assume that the spheroidal inclusions possess an isotropic dielectric function
but with the uniaxial axis lying along the z-axis. Each spheroidal particle is described
by two depolarization factors, which we denote by Lxy and Lz, satisfying the sum rule
Lz + 2Lxy = 1. Since the inclusions are randomly oriented (corresponding to a uniform
distribution of spheroids over the entire solid angles), the effective response is still isotropic.
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For other distributions, such as a random orientation in a plane, an anisotropic dielectric tensor
is needed [6]. We will adopt two different models to investigate the effects of the particle shape
dependence of the linear and non-linear optical properties of composite media.

We use the spectral representation [7, 8], which is a mathematically rigorous formal
expression for the effective linear dielectric constant εe. It offers the advantage of a separation
of material parameters from the geometric information, which is characterized by the spectral
density function m(s ′). With m(s ′) given, we will not only study the influence of particle
shape on the linear optical properties, but we will also calculate the non-linear optical
susceptibility [3, 11].

This paper is organized as follows. In the next section, we formulate the linear and non-
linear response with the use of the spectral representation. In sections 3 and 4, we derive the
effective linear response εe first without self-consistency and then by a self-consistent theory.
We then calculate the spectral density function m(s ′) both numerically and analytically as a
function of the depolarization factor and volume fractions. In section 5, the linear and non-
linear optical properties such as optical absorption and the enhancement of optical non-linearity
are investigated. This is followed by a summary of our results in section 6.

2. Formulation of effective linear and non-linear response under spectral representation

Let us consider a non-linear composite system, in which spheroidal metal particles with volume
fraction f are randomly embedded in an isotropic dielectric host. The local constitutive D–E

relation of components is given by D = εiE + χi |E|2E, where εi and χi are the (scalar)
dielectric constant and the third-order non-linear susceptibility of the components. The uniaxial
axis of the spheroidal particles is assumed to be randomly oriented in space. Such spheroidal
particles are described by the depolarization factors Lz and Lxy , which are positive and satisfy
the sum rule Lz + 2Lxy = 1. For spherical particles, Lz = Lxy = 1/3, while for cylindrical
ones, Lz = 0 and Lxy = 1/2. In general, Lz is strongly shape dependent and is given
by [12–14]

Lz = 1

1 − r2
+

r

(r2 − 1)3/2
ln(r +

√
r2 − 1) (1)

for prolate spheroids with an aspect ratio r = c/a > 1 while

Lz = 1

1 − r2
+

r

(1 − r2)3/2
arccos r (2)

for oblate spheroids with r = c/a < 1, where a (=b), c are the semi-axes of a spheroid along
the Cartesian axes. With a given aspect ratio r , one can determine uniquely a depolarization
factor Lz. Thus, in subsequent calculations, we shall use Lz to characterize the shape of the
spheroidal particles.

We restrict our discussion to the quasi-static approximation, i.e., d/λ � 1, where d is
the characteristic size of the particle and λ is the wavelength of the incident light. In the
quasi-static approximation, the composite media can be regarded as an effective homogeneous
medium, with an effective linear dielectric function εe and effective non-linear susceptibility
χe, defined by [5]

D = εeE0 + χe|E0|2E0 (3)

where E0 ≡ 〈E〉 is the spatial averaged electric field. Our aim here is to calculate the effective
linear and non-linear response for non-linear spheroidal particles randomly embedded in a
linear or non-linear host.
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For two-component composites, it has proved convenient to adopt the spectral
representation of the effective linear response [7, 8]: let v = 1 − ε1/ε2, w = 1 − εe/ε2,
and s = 1/v; we find

w(s) =
∫ 1

0

m(s ′)
s − s ′ ds ′ (4)

where m(s ′) is the spectral density function, which is obtained through a limiting process:

m(s ′) = lim
η→0+

− 1

π
Im[w(s ′ + iη)]. (5)

Once m(s ′) is given, the effective linear dielectric constant and the non-linear optical
susceptibility can be obtained with the knowledge of the material parameter s. For the effective
linear response εe, we have

εe = ε2

[
1 −

∫
m(s ′)
s − s ′ ds ′

]
(6)

while for the effective non-linear susceptibility χe, we evaluate in the mean-field
approximation, i.e.,

χe =
∑
i

fiχi〈|E|2E2〉lin,i
E4

0

≈
∑
i

fiχi〈|E|2〉lin,i〈E2〉lin,i
E4

0

(7)

where fi equals f (or 1 − f ) for i = 1 (or 2), and the subscript means that the electric field
is to be taken from the solution to the corresponding linear problem. We have adopted the
decoupling approximation in the above equation, which works well when the field within the
metal particles is fairly uniform but may become inaccurate when the variation of the field
inside them is large. Such an approximation yields a lower bound for the accurate result [3].
The local field averages in equation (7) are given by [3, 9–11]

f 〈E2〉lin,1 =
∫ 1

0
ds ′ s2m(s ′)

(s − s ′)2
E2

0

(1 − f )〈E2〉lin,2 =
[

1 −
∫ 1

0
ds ′ (s

2 − s ′)m(s ′)
(s − s ′)2

]
E2

0

(8)

and

f 〈|E|2〉lin,1 =
∫ 1

0
ds ′ |s|2m(s ′)

|s − s ′|2 E
2
0

(1 − f )〈|E|2〉lin,2 =
[

1 −
∫ 1

0
ds ′ (|s|2 − s ′)m(s ′)

|s − s ′|2
]
E2

0 .

(9)

Thus we have formulated the spectral representation for calculating the effective linear
and non-linear optical properties. In the next two sections, we will derive the spectral density
by two different methods.

3. Maxwell-Garnett-type approximation (MGA1)

We start out by averaging the electric field in the spheroidal inclusions:

〈E1〉 = 1

3

[
ε2

Lzε1 + (1 − Lz)ε2
+

2ε2

Lxyε1 + (1 − Lxy)ε2

]
〈E〉 (10)

where 〈E〉 is the average field of the whole system, which is just the applied field E0 under
appropriate boundary conditions. For a non-dilute mixture of spheroidal inclusions, randomly
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dispersed in a dielectric host, 〈E〉 should be replaced by the Lorentz local field 〈EL〉, which
includes the contribution from the dipole moments of all other inclusions. The expression for
the spatial average of the electric field is thus

〈E〉 = E0 = f 〈E1〉 + (1 − f )〈EL〉. (11)

On the other hand, we average the dielectric displacement 〈D〉 over the whole volume of the
composite and get

〈D〉 = f ε1〈E1〉 + (1 − f )ε2〈EL〉. (12)

According to the definition of the effective dielectric constant εe, we have

εe = 〈D〉
〈E〉 = 〈D〉

E0
= f ε1〈E1〉 + (1 − f )ε2〈EL〉

f 〈E1〉 + (1 − f )〈EL〉 . (13)

Substituting equations (11), (12) into equation (13), we have

εe = ε2
3 + f [βz(1 − Lz) + 2βxy(1 − Lxy)]

3 − f (βzLz + 2Lxyβxy]
(14)

where βi = (ε1 − ε2)/[ε2 + Li(ε1 − ε2)] (i = z, xy).
We should remark that the above formalism has been found with theT -matrix method [13].

In this way, the randomly oriented spheroidal particle is replaced by an effective spherical
particle and hence the mutual interaction between different polarizations is explicitly neglected
in the calculation of the Lorentz local electric field. As pointed out by Nan et al [13], the
derivation takes on the first-order approximation of the T -matrix and ignores the mutual
interaction between different polarizations, and thus it can only be valid for small volume
fractions. In fact, the case for volume fractions larger than 0.5 is unattainable for a suspension
of hard spheroids.

In the dilute limit, equation (14) reduces to

εe = ε2

{
1 +

f

3

[
ε1 − ε2

ε2 + Lz(ε1 − ε2)
+ 2

ε1 − ε2

ε2 + Lxy(ε1 − ε2)

]}
(15)

which was already reported in references [4] and [5].
From equation (14), the function w(s) is found to be

w(s) = F1

s − s1
+

F2

s − s2
(16)

where the poles s1 and s2 are located at

s1 = 1

12
[3 − 2f + 3Lz +

√
(2f − 3 − 3Lz)2 − 72(1 − f )(1 − Lz)Lz]

s2 = 1

12
[3 − 2f + 3Lz −

√
(2f − 3 − 3Lz)2 − 72(1 − f )(1 − Lz)Lz]

(17)

and F1, F2 are the residues of these poles:

F1 = f

6

1 + 3Lz − 6s1

s2 − s1
F2 = f

6

1 + 3Lz − 6s2

s1 − s2
. (18)

Thus the spectral density function can be written as a sum of two delta functions:

m(s ′) = F1δ(s
′ − s1) + F2δ(s

′ − s2). (19)

In figure 1, we plot the poles s1, s2 together with the residues F1 and F2 against the
depolarization factor Lz for several volume fractions f = 0.1, f = 1/3 and f = 0.5. We
see that s1 (s2) decreases (increases) firstly for prolate spheroids (Lz < 1/3) and reaches a
minimum (maximum) for spherical particles (Lz = 1/3) and it then increases (decreases) with
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Figure 1. The poles (s1, s2) and residues (F1, F2) of the spectral density for MGA1 plotted against
Lz for different values of volume fractions f = 0.1, 1/3 and 0.5.

the further increase of Lz, but these poles decrease when the volume fraction increases except
for the case of L = 1/3. On the other hand, the residues F1, F2 also exhibit a non-monotonic
behaviour with the increase ofLz. That is, F1 decreases to zero atLz = 1/3 and then increases,
while F2 increases and reaches the maximum value f at Lz = 1/3. We also find that F2 is
monotonically increasing as f increases, but F1 takes on a more complex behaviour with f .
We remark that when the inclusions are spherical in shape, we will still get two poles s1 and s2.
However, the residue of the first pole is zero; the spectral function is still a single delta function,
as expected. When the shape of the inclusions is far from being spherical, we obtain two poles
with non-zero residues leading to two surface plasmon resonance frequencies, reflected in the
optical absorption spectrum.

4. Maxwell-Garnett-type approximation based on the self-consistent condition of zero
net polarization (MGA2)

In this section, we generalize our cellular model [15] to study the system in which the spheroidal
metal inclusions are dispersed in a dielectric host medium. To formulate the cellular model,
we construct the Wigner–Seitz cell of each microspheroid and replace the composite by a
fictitious homogeneous medium of a dielectric constant εm, except for one of the cells. The
cell is then replaced by a spheroidal core of dielectric constant ε1, coated by a spheroidal shell
of ε2. The core and the shell are confocal and have the same aspect ratio, characterized by
r = bccc = bs/cs , where the subscripts c and s mean core and shell.

The effective linear dielectric constant εe is given by the dilute-limit expression:

εe = εm + pεm[bz(ε1, ε2, εm, y) + 2bxy(ε1, ε2, εm, y)] (20)

where p is an infinitesimal volume fraction and y ≡ (a2
c cc)/a

2
s cs is the volume ratio of the core

to the whole coated spheroid. bz is the dipole factor for a single-coated spheroidal inclusion
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along the z-axis [16]:

bz = 1

3

(ε2 − εm)[ε2 + Lz(ε1 − ε2)] + (ε1 − ε2)y[ε2 + Lz(εm − ε2)]

(ε2 − ε1)(εm − ε2)yLz(1 − Lz) + [ε2 + (ε1 − ε2)Lz][εm + (ε2 − εm)Lz]
(21)

where y ≡ (a2
c cc)/a

2
s cs is the volume ratio of the core to the whole coated spheroid. The

effective dielectric constant εe can be obtained self-consistently with equation (20) and equation
(21), if we identify y with f and εm with εe; then equation (20) becomes a self-consistent
equation, which readily implies that

bz + 2bxy = 0 (22)

where bxy can be obtained by replacing the subscript b with xy in equation (21). In the above
equation, the mutual interaction between different polarizations is taken into account in a
self-consistent way and equation (22) can thus be used for large volume fractions.

From equations (21) and (22), the function w(s) is therefore

w(s) = 1

5 − 3Lz

{
3 +

3f (1 − Lz)

2[s − (1 − f )(1 − Lz)/2]
+

f (1 − 3Lz)

2[s − Lz(1 − f )]

+
6

(1 − 3Lz)(1 − f )

[
1

s − Lz(1 − f )
− 1

s − (1 − Lz)(1 − f )/2

]

×
√
(s − x1−)(s − x1+)(s − x2−)(s − x2+)

}
. (23)

The branch should be chosen so that the phase of s − xi± (i = 1, 2) is restricted to within
(0, 2π). Here x1−, x1+, x2− and x2+ are solutions of the following equation:

144x4 + C3x
3 + C2x

2 + C1x + C0 = 0 (24)

with

C0 = (Lz − 1)(1 − f )2[9L3
z(4 − 4f + 9f 2)− 9L2

z(4 + 7f 2)− fLz(28 + 17f )− f 2] (25)

C1 = 4(1 − f )[9L3
z(2 − 3f + f 2) + 9L2

z(3 − f )f + Lz(7f
2 − 18 − 25f )− 7f (1 + f )]

(26)

C2 = 36L2
z(4f − f 2 − 3) + 72Lz(3 − 2f − f 2) + 36 + 128f − 20f 2 (27)

C3 = 144[Lz(f − 1)− 1 − f ]. (28)

Then the spectral density m(s ′) is found analytically to be

m(s ′) = 1

5 − 3Lz

{
3f (1 − Lz)δ

[
s ′ − (1 − Lz)(1 − f )

2

]

+ f (1 − 3Lz)θ(1 − 3Lz)δ[s ′ − Lz(1 − f )]

+
6

π |(1 − 3Lz)|(1 − f )

∣∣∣∣ 1

s ′ − Lz(1 − f )
− 1

s ′ − (1 − Lz)(1 − f )/2

∣∣∣∣
×

√
(s ′ − x1−)(s ′ − x1+)(s ′ − x2−)(s ′ − x2+)

× [θ(s ′ − x1−)− θ(s ′ − x1+) + θ(s ′ − x2−)− θ(s ′ − x2+)]

}
. (29)

We also calculate m(s ′) numerically from equation (22). We put s = s ′ + iη and choose
the real part at one thousand equally spaced values across the interval 0 < s ′ < 1 and the imag-
inary part η at some positive value such as 0.001. The actual value of η is indeed unimportant.
We find that the result is acceptable by checking the sum rule∫ 1

0
m(s ′) ds ′ = f. (30)
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In figure 2, we plot the spectral density m(s ′) against s ′ for several values of Lz = 0.05,
1/3, 0.5, 0.75 and for the volume fractions f = 0.1, 0.3, 0.5, 0.7.

We find that, for prolate spheroids (Lz < 1/3), the spectral density exhibits two peaks
centred around s1 = (1 − Lz)(1 − f )/2 and s2 = Lz(1 − f ), values that are similar to, but
numerically different from, those of MGA1. For Lz = 1/3, i.e., the particles are spherical in
shape, we obtain the well known MGA spectral density m(s ′) = f δ[s ′ − (1 − f )/3] with the
pole s1 = (1−f )/3 and the residue F = f . In the figure, a single peak is shown. For a further
increase in Lz, there exists only one peak and the location of the peak shifts to small s ′. Quite
different from that of MGA1, the spectral density of MGA2 contains two continuous spectra.
This can be understood on the basis of the fact that the mutual interaction between different
polarizations is taken into account through the self-consistent solution. For a small volume
fraction, the continuous spectrum sharpens, while when f gradually increases, the interaction
among inclusions becomes strong; it results in a broad spectrum.

As we have obtained the spectral density by two methods, we can readily investigate the
effective linear dielectric constant and the third-order non-linear susceptibility.
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Figure 2. The spectral density m(s′) for MGA2 against s′ for various f = 0.1, 0.3, 0.5, 0.7 and
Lz = 0.05, 1/3, 0.5 and 0.75.

5. Shape dependence of the linear absorption and the enhancement of optical
non-linearity

We are now in a position to study the dependence of the linear absorption Im(εe) and the
third-order non-linear susceptibility χe on the depolarization factor Lz. In model calculations,
we adopt the Drude model for the dielectric function of metal nanoparticles:

ε1(ω) = 1 − ω2
p

ω(ω + iγ )
(31)
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where ωp is the plasmon frequency and γ is the damping constant. We choose γ = 0.01ωp,
which is typical of a good bulk metal, and ε2 = 1.77, which is the dielectric constant of
water. In general, the third-order non-linearity of metal particles is several orders of magnitude
larger than that of a dielectric matrix and the matrix contribution to the effective non-linear
susceptibility is small. Thus we assume that the metal component can be taken to be non-linear,
while the host medium is linear.

In figure 3, the linear absorption spectrum Im(εe) is plotted against frequencyω for various
Lz and f , both for (a) MGA1 and (b) MGA2. As is evident from the results, the absorption
spectrum Im(εe) exhibits a behaviour similar to that of the spectral density. The result from
MGA1 shows a large linear absorption at the two resonant frequencies for spheroidal particles,
which is related to the surface plasmon resonance of the metal particles. These frequencies
depend strongly on the depolarization factor but weakly on the volume fractions, especially
for needlelike (L → 0) and platelike (L → 1) particles.

However, for MGA2, in addition to one (or two) surface plasmon resonant frequencies for
oblate (or prolate) spheroidal particles, we also observe two absorption bands, which are absent
in the results from MGA1. With increasing volume fraction, when the interaction between
particles becomes stronger, broad absorption bands in the regions 0.2 < ω/ωp < 0.4 and
0.7 < ω/ωp < 0.9 are observed. For a small volume fraction (such as f = 0.1), the two
approximations yield almost identical results. In fact, in the dilute limit, the self-consistent
solution of equation (22) still reduces to the dilute-limit expressions (equation (15)), because
in this limit, the interaction between particles can be neglected. From the figure, we clearly
see that the particle shape (parametrized by the depolarization factor) plays an important role
in determining the optical absorption including its resonant frequencies (or resonant bands)
and magnitudes.

Moreover, we concentrate on the effect of the depolarization factor on the enhancement
of optical non-linearity |χe|/χ1, as shown in figure 4, both for MGA1 and MGA2. For MGA1,
the optical non-linearity is found to be greatly enhanced at the two surface plasmon resonant
frequencies. Such a behaviour has been reported experimentally [4] and it occurs at the same
frequency as that of the linear absorption. However, the enhancement of non-linearity is
more pronounced than that of linear absorption. For MGA2, the optical non-linearity can be
enhanced not only in one resonant frequency but also within a certain band as a result of the
mutual interaction between different polarizations. Concomitantly, MGA1 and MGA2 yield
similar enhancement of non-linearity at low volume fractions such as f = 0.1.

From the above study, we conclude that the linear absorption and even the effective non-
linear optical susceptibility are strongly dependent on the depolarization factor. Our results
suggest that it may be possible to tune the frequency range of enhancement of non-linearity
by controlling the particle shape.

6. Discussion and conclusions

In this work, we have investigated the effects of the depolarization factor (and thus the
shape of the granular component) on the non-linear optical properties of a suspension of
spheroidal metal particles randomly embedded in a dielectric host. Maxwell-Garnett-type
approximations have been derived which reduce to the standard MGA approximation in the
limit of spherical particles. We show that the spectral density and the optical properties depend
strongly on the depolarization factor. As we include the mutual interaction between different
polarizations in the self-consistent calculation, the absorption and optical enhancement spectra
become broad continuous functions. This demonstrates that the non-self-consistent theory
(MGA1) can only be suitable for low volume fractions. For larger volume fractions the
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Figure 3. The linear absorption Im(εe) against the frequency ω for (a) MGA1 and (b) MGA2. The
values of the physical parameters are the same as those of figure 2.
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Figure 4. Similar to figure 3, but for the enhancement of the third-order non-linear susceptibility
|χe|/χ1 against ω for (a) MGA1 and (b) MGA2.
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mutual interaction between different polarizations becomes strong and we cannot neglect it
any longer.

Here, we would like to add a few comments regarding our results. Our results can not
only help obtain a large enhancement of non-linear optical response, but also they help attain
the maximum response in any desired frequency regime by adjusting the shape of metal
particles. However, a large enhancement of non-linearity is always accompanied by a large
absorption, which hinders practical applications. In this respect, we may manipulate composite
microstructure, such as by the use of correlated [17] and anisotropic [18] microstructure, to
achieve a large enhancement of optical non-linearity and a concomitant suppression of optical
absorption.

In this work, we assume that all the metal particles have the same shape and depolarization
factor. According to the analysis of the absorption coefficient and conjugate reflectivity in
related experiments, it has been shown that the particles can have a distribution of shapes.
Our model can easily be generalized to a distribution of shapes by including a distribution of
depolarization factors. So far, we have considered the Maxwell-Garnett-type models, which
means that two constituents are asymmetric (i.e., distinct inclusion particles are embedded
in a host material). For a symmetric microstructure (i.e., two interdispersed components
are randomly distributed), we should apply the Bruggeman-type approximation [19] for the
spheroidal inclusion case.

Our calculation may have relevance to a recent optical non-linearity enhancement
experiment on Au:TiO2 composites, in which the Au particles are non-spherical in shape
in samples as prepared in the fabrication process and a large enhancement was reported
for the annealed samples [20]. For these samples, there is no strong evidence of any
clustering/correlation in the microstructure and the cellular model is expected to be good.
Our calculation reveals that the optical properties are highly sensitive to the particle shape and
thus allows an extra freedom of adjusting the magnitude of the enhancement and the frequency
where the enhancement occurs.
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